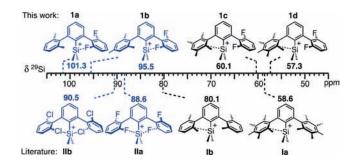


Competition between π -Arene and Lone-Pair Halogen Coordination of Silylium lons?

Paola Romanato, Simon Duttwyler, Anthony Linden, Kim K. Baldridge,* and Jay S. Siegel*

Organic Chemistry Institute, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland


Supporting Information

ABSTRACT: In 2,6-diarylphenylSiR₂ cations, the 2,6-diarylphenyl (m-terphenyl) scaffold blocks incoming nucleophiles and stabilizes the positive charge at silicon by lateral ring interactions. Direct ortho-halogen and π -electronrich face coordination to silicon has been seen. For a series of cations bearing 2,6-difluoro-2',6'-dimethyl- X_n -substituted rings, the relative contribution of these two modes of stabilization has been assessed. Direct coordination from an aryl fluoride is found to be comparable to that from the mesityl π -face.

The quest for stable silylium ions, R₃Si⁺, has led to the use of the 2,6-diarylphenyl (*m*-terphenyl) scaffold as a substituent, which can block incoming nucleophiles and stabilize the positive charge at silicon by lateral ring interactions. When the lateral rings are π -electron-rich because of methyl groups, single $\eta^1 \pi$ coordination to the silicon center dominates.¹c In contrast, halogen→Si interactions dominate when chlorine or fluorine atoms are at the ortho positions of the flanking rings (I and II in Figure 1).^{2,3} Are the energetic details of these two modes of stabilization comparable? Would π effects compete or cooperate with the halogen \rightarrow Si interactions? This study of a series of cations 1 bearing 2,6difluoro- and 2,6-dimethyl-X_n-substituted rings indicates a "friendly" competition between the two modes of stabilization: lowerbasicity xylyl and mesityl rings (1a, 1b) contribute less than the F→Si interactions, whereas higher-basicity duryl and pentamethylphenyl rings (1c, 1d) contribute more than the F→Si interactions.

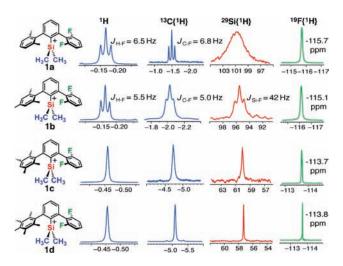
Single Negishi coupling of triazene 3^4 followed by treatment of 4 with iodine afforded biphenyl 5. Hart-type coupling 5 of 5 and subsequent lithiation/silylation furnished silanes 7. Cations 1 were prepared by hydride abstraction using $[Ph_3C][B(C_6F_5)_4]$ (Scheme 1).

NMR spectroscopy studies suggest analogies between 1a/1b and IIa and between 1c/1d and Ia (Figure 1). The experimental and calculated ^{29}Si NMR shift data (Table 1) show 1a and 1b ($\delta \approx$ 100 ppm) to be more deshielded than 1c and 1d ($\delta \approx$ 60 ppm). In 1a and 1b, the signal multiplicity for the SiMe₂ fragment (^1H , ^{13}C , ^{29}Si) indicates a dynamic equilibrium of

Figure 1. ²⁹Si NMR shifts of different terphenylsilylium ions: (black) molecules with preferential π -arene—Si interactions; (blue) molecules with preferential halogen—Si interactions. Solvent, C_6D_6 ; anion, $B(C_6F_5)_4^-$.

Scheme 1

tautomers in which Si–F coupling is detectable (Figure 2). The unresolved signals of 1c and 1d imply weak interactions with the ortho fluorine atoms, whereas an analysis of the 13 C NMR shifts of the lateral rings in these cations is consistent with $\eta^1 \pi$ coordination by the C_{ortho} atoms of the methylated rings. Thus evolves a picture for 1a-d in which, among structures of an equilibrium that is fast on the NMR time scale, $F \rightarrow Si$ interactions contribute demonstrably in 1a and 1b but to a lesser extent in 1c and 1d.


M06-2X/Def2-TZVPP calculations predicted cations 1 to adopt a C_1 -symmetric geometry with a low barrier to dynamic exchange of silicon among the preferential coordination sites. In the specific cases, two minima were predicted for 1a and 1b, with halogen \rightarrow Si preferred over π -arene \rightarrow Si, whereas only a single π -arene \rightarrow Si conformation was predicted for 1c and 1d.

Computational structural predictions fully matched the solidstate structures of 1a and 1d (Figure 3), which were obtained as

Received: May 11, 2011 Published: July 18, 2011

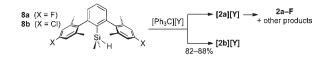
Table 1. M06-L/Def2-TZVPP//M06-2X/Def2-TZVPP CSGT ²⁹Si NMR (ppm) Predictions for 1a, 1b, 1c, and 1d in Toluene

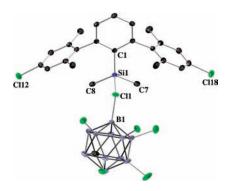
	1a	1b	1c	1d
exptl	101.3	95.5	60.1	57.3
calcd	98.9	97.6	61.6	56.2

Figure 2. NMR analysis of **1a**, **1b**, **1c**, and **1d**: signals for methyl groups at silicon are shown in blue, signals for silicon in red, and signals for fluorine in green, each in the fast-exchange limit. Solvent, C_6D_6 ; anion, $B(C_6F_5)_4$.

Figure 3. X-ray structures of (left) $[1a][CB_{11}H_6Cl_6]$ and (right) $[1d][CB_{11}H_6Cl_6]$ with 35% probability ellipsoids; anions and hydrogen atoms have been omitted. Dashed lines show the F \rightarrow Si and π -arene \rightarrow Si interactions.

solvent-free salts with the carborane anion $CB_{11}H_6Cl_6^{-.8}$ 1a exhibits fluorine coordination with a Si1-F1 distance of 1.8658(8) Å, which is longer than the Si-F bond length of 1.600(1) Å in Me_3SiF (Table 2). Y-ray analysis of 1d revealed π coordination via $C_{\rm ortho}$ with a Si1-C16 distance of 2.089(2) Å, which is longer than the Si-C bond length of 1.875(2) Å in Me_4Si . In both cations, the dihedral angle between the coordinating ring and the central ring deviates significantly from 90° , whereas the noninteracting ring adopts an almost perpendicular conformation relative to the central ring.


Aspirations to obtain a truly tricoordinate silylium ion led to the synthesis of cations **2** (Scheme 2). Hydride abstraction from **8a** with different trityl salts $[Y = B(C_6F_5)_4^-, CB_{11}H_6Cl_6^-]$ showed the formation of Ph₃CH; however, cation **2a** was not observed. Instead, several decomposition products, including fluorosilane **2a**–F, were formed. ^{10,11} In contrast, **2b** was generated cleanly. ¹³C NMR analysis of $[2b][B(C_6F_5)_4]$ revealed a


Table 2. Selected Bond Lengths (Å) and Angles (deg) for the Single-Crystal X-ray Structures and the Calculated C_1 Conformers of 1a and 1d

1a			1d		
parameter	exptl	calcd	parameter	exptl	calcd
F1→Si1	1.8658(8)	1.8880	C16→Si1	2.089(2)	2.1703
C10-F1	1.448(2)	1.4246	C16-C21	1.546(2)	1.5355
C14-F2	1.346(2)	1.3327	C20-C25	1.508(3)	1.5048
$\Sigma C - Si - C$	356.8(1)	356.58	$\Sigma C - Si - C$	345.5(2)	349.94
dfp-Si ^a	0.190(1)	0.198	dfp-Si ^a	0.413(1)	0.344
dihedral angle b	$29.4(1)^{c}$	29.90	dihedral angle b	$45.3(1)^d$	50.54

^a Distance between the Si atom and the plane defined by the three C atoms bound to Si. ^b Angle between the least-squares planes of a flanking ring and the central ring. ^c Between the ring containing F1 and the central ring. ^d Between the ring containing C16 and the central ring.

Scheme 2

Figure 4. X-ray structure of **2b**-CB₁₁H₆Cl₆ with 35% probability ellipsoids; hydrogen atoms have been omitted.

 $C_{ortho}-Si~\pi$ coordination comparable in strength to that of **Ib**, although their $\delta(^{29}Si)$ signals differed by \sim 15 ppm.

Crystals of **2b** were obtained with the carborane anion $CB_{11}H_6Cl_6^-$. The X-ray analysis revealed an interaction between a lower-belt chlorine atom of the carborane and silicon (Figure 4). The Si1–Cl1 distance is 2.3130(5) Å, which is almost identical to that in $iPr_3-CB_{11}H_6Cl_6$; ¹² coordination of **2b** by the anion causes a pyramidalization of the silicon center, as shown by the sum of angles around silicon $[\Sigma C-Si-C=351.40(12)^\circ]$ and by the corresponding out-of-plane distance $[dfp-Si=0.3154(4) \ Å]$. ¹³

Electron-rich arenes and aryl halides are donors for silylium ions. A delicate balance between these two coordination modes in silylium ions and a clear break point between mesityl- and duryl-substituted cations have been found. Arenes with reduced π basicity and no possible halogen—Si interactions (2) poorly accommodate the avidity of Si⁺ for electron density, allowing coordination by anions as weakly basic as carborane (CB₁₁H₆Cl₆⁻) to be observed in the crystal.

ASSOCIATED CONTENT

Supporting Information. Experimental procedures, computational details, and CIFs for [1a][CB₁₁H₆Cl₆], [1d][CB₁₁H₆Cl₆], and 2b—CB₁₁H₆Cl₆. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

kimb@oci.uzh.ch; jss@oci.uzh.ch

ACKNOWLEDGMENT

This work was supported by the Swiss National Science Foundation. K.K.B. gratefully acknowledges D. Truhlar for access to G03-mngfm41 at MSI.

■ REFERENCES

- (1) (a) Kim, K.-C.; Reed, C. A.; Elliott, D. W.; Mueller, L. J.; Tham, F.; Lin, L.; Lambert, J. B. Science 2002, 297, 825.(b) Auner, N.; Müller, T.; Ostermeier, M. In Organosilicon Chemistry IV; Auner, N., Weis, J., Eds.; Wiley-VCH: Weinheim, Germany, 2000; p 127. (c) Duttwyler, S.; Do, Q.-Q.; Linden, A.; Baldridge, K. K.; Siegel, J. S. Angew. Chem., Int. Ed. 2008, 47, 1719. (d) Klare, H. F. T.; Bergander, K.; Oestreich, M. Angew. Chem., Int. Ed. 2009, 48, 9077. (e) Klis, T.; Powell, D. R.; Wojtas, L.; Wehmschulte, R. J. Organometallics 2011, 30, 2563.
- (2) (a) Romanato, P.; Duttwyler, S.; Linden, A.; Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 2010, 132, 7828. (b) For a review of related dative fluorine to transition-metal interactions, see: Kulawiec, R. J.; Crabtree, R. H. Coord. Chem. Rev. 1990, 99, 89. (c) For a recent example of dative fluorine to transition-metal interactions, see: Stanek, K.; Czarniecki, B.; Aardoom, R.; Ruegger, H.; Togni, A. Organometallics 2010, 29, 2540.
- (3) Christe, K. O.; Zhang, X.; Bau, R.; Hegge, J.; Olah, G. A.; Prakash, G. K. S.; Sheehy, J. A. J. Am. Chem. Soc. 2000, 122, 481.
 - (4) Liu, C.-Y.; Knochel, P. Org. Lett. 2005, 7, 2543.
 - (5) Saednya, A.; Hart, H. Synthesis 1996, 1455.
- (6) For comparison of the ¹³C NMR shifts for cations 1 and 2 with respect to the neutral silane precursors, see the Supporting Information.
- (7) Details of the calculations are given in the Supporting Information.
- (8) Reed, C. A. Acc. Chem. Res. 1998, 31, 133.
- (9) Rempfer, B.; Oberhammer, H.; Auner, N. J. Am. Chem. Soc. 1986, 108, 3893.
- (10) Studies indicated that under the conditions given in Scheme 2, 2a abstracts fluoride from 8a (see the Supporting Information for details). 2a—F was identified by GC—MS and ²⁹Si NMR spectroscopy.
- (11) For C_{aryl}—F activation, see: (a) Duttwyler, S.; Douvris, C.; Fackler, N. L.; Tham, F. S.; Reed, C. A.; Baldridge, K. K.; Siegel, J. S. Angew. Chem., Int. Ed. 2010, 49, 7519. (b) Allemann, O.; Duttwyler, S.; Romanato, P.; Baldridge, K. K.; Siegel, J. S. Science 2011, 332, 574. (c) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188. (d) Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed.; Wiley: New York, 1994; Vol. 11. (e) Olah, G.; Tolgyesi, W. S.; Dear, R. E. A. J. Org. Chem. 1962, 27, 3441
- (12) For $iPr_3Si-CB_{11}H_6Cl_6$ and $[iPr_3Si-ODCB][CHB_{11}Cl_{11}]$, respectively, see: (a) Xie, Z.; Manning, J.; Reed, R. W.; Mathur, R.; Boyd, P. D. W.; Benesi, A.; Reed, C. A. *J. Am. Chem. Soc.* **1996**, *118*, 2922. (b) Hoffmann, S. P.; Kato, T.; Tham, F. S.; Reed, C. A. *Chem. Commun.* **2006**, 767.
 - (13) Bond lengths and angles are listed in the Supporting Information.